BAS(1)

NAME

User commands BAS(1)

bas — BASIC interpreter

SYNOPSIS

bas [-b] [-] file] [-r] [-u] [program [argument...]]

bas [——backslash—colon] [—-Ip file] [-—restricted] [-—uppercase] [program [argument...]]
bas —h|——help

bas ——version

DESCRIPTION

Introduction

Bas is an interpreter for the classic dialect of the programming language BASIC, as typically found on mi-
crocomputers of the eighties. If no file is given, it reads optionally numbered lines from standard input.
Non-numbered lines are executed immediatly (direct mode), numbered lines are stored in ascending order.
The line number must be a positive integer. All statements are compiled before the program is run, which
catches syntactic and other errors. Keywords and variable names are not case sensitive.

If a program with unnumbered lines is loaded, storing or deleting numbered lines in direct mode is not pos-
sible. You must use renum to renumber the program first or edit to modify the entire program inside an
editor. If a numbered program is loaded, typing a line number with an otherwise empty line deletes that
line same the delete does.

If a program is given, it is loaded, compiled and run; bas will exit if program execution stops, ends or just
hits the end of the program. If the first line of a program file begins with #!, it is ignored by the interpreter.

Statements

Each line of a BASIC program contains one or more of the statements below. Multiple statements are
grouped by a colon (:) in between them. Brackets ([and]) are converted to parentheses when loading a
program for compatibility with dialects that use them e.g. to indicate array indices.

variable[(argument{, argument})] = expression
Assign the value of the function to the variable.

[call] function[(argument{, argument})]
Call the function or procedure. The ANSI syntax requires the keyword call, whereas other BASIC
dialects don’t. In bas, call is optional.

chdir directory$
Change the current directory to directory$.

clear Set all numerical variables to 0 and all string variables to the empty string. All arrays lose their di-
mension and geometry. All files are closed.

close [#channel%{ #tichannel%}]
Close the specified channels. If no channels are given, all channels but the standard input/output
channel #0 are closed.

cls Clear the screen. Not all terminals support this. The rarely used keyword home will be converted
to cls when loading a program.

color [foreground][,[background][,[border]]]

All parameters must be between 0 and 15. If your terminal type supports ANSI colour codes, the
foreground colour will be set to the given value. The background colour can only be set to one of
the lower 8 colours, selecting a higher colour silently uses the matching lower colour (e.g. red in-
stead of light red). The border colour is always ignored. The following colours are available:
black (0), blue (1), green (2), cyan (3), red (4), magenta (5), brown (6), white (7), grey (8), light
blue (9), light green (10), light cyan (11), light red (12), light magenta (13), yellow (14), bright
white (15).

copy from$ to to$
Copy a file.

July 26, 2020 1

BAS(1) User commands BAS(1)

data input-data{input-data}
Store data to be accessed by read. The input-data has the same format as data that is read by in-
put statements. Data can not be stored in direct mode. This statement is ignored during execu-
tion. Abbreviation: d.

dec lvalue{,lvalue}
Decrement lvalue.

def tnfunction[(parameter[,parameter...])]
Define a function. Function identifiers always start with fn. A function ends and returns its value
using =expression. Additionally, a function may return a value using fnreturn expression before
reaching its end. Functions can not be declared in direct mode. Note: Multi line functions are not
supported by all BASIC dialects. Some dialects allow white space between the fn and the rest of
the identifier, because they use fn as token to mark function identifiers for both declaration and
function call. Bas removes that space when loading a program.

defdbl variable[—variable]
Declare the global variable as real. Only unqualified variables (no type extension) can be de-
clared. Variable ranges can only be built from single letter variables. Declaration is done at com-
pile time.

defint variable[—variable]
Declare the global variable as integer.

defstr variable[—variable]
Declare the global variable as string.

def procfunction[(parameter[,parameter...])]
Define a procedure (function that does not return a value). Procedure identifiers always start with
proc if defined this way. A procedure ends with end proc. This is the BBC BASIC syntax. Pro-
cedures can not be declared in direct mode.

delete [from][-|,][?0]
Delete the specified line or range of lines. Unlike list, the lines must exist.

dim variable (dimension%{,dimension%?})
Dimension the array variable. If the array variable already exists, it must first be erased. The di-
mension% specifies the upper index of the last element, not the number of elements! The lower in-
dex is specified by option base, it is zero by default.

display filename$
Display the contents of filename$ on standard output, like car(1) does.

do

exit do

loop Repeat the loop body in between do and loop until exit do ends looping.
do until condition

exit do

loop Unless the condition is true or exit do ends looping, repeat the loop body in between do while and
loop. This is equivalent to while not/wend.

do while condition
exit do

loop While the condition is true or exit do ends looping, repeat the loop body in between do while and
loop. This is equivalent to while/wend.

do

July 26, 2020 2

BAS(1) User commands BAS(1)

exit do

loop until condition
Repeat the loop body in between do and loop until until the condition is true or until exit do ends
looping. This is equivalent to repeat/until.

edit [/ine]
Save the program to a temporary file, start an external editor on that file and load the program
again from the file. If a line is given, the editor is told to start on that line. Bas knows the calling
conventions for a number of common editors, but if your favourite is not among them or does not
support that feature, the line will be ignored. The editor is specified by the environment variable
VISUAL, or EDITOR if VISUAL is not set. If that is not set as well, vi(1) is used.

end End program execution. If the program was started from direct mode, return to direct mode, other-
wise the interpreter terminates. Although allowed by BASIC itself, bas only allows return state-
ments to be followed by a colon and a comment, because anything else would be unreachable. In
interactive mode, a diagnostic message is printed to indicate the program did not just terminated
after the last line.

environ entry$
Modify or add an environment entry$ of the form variable=value.

erase variable{,variable}
Erase the array variable.

function function[(parameter[,parameter...])]
Define a function (ANSI BASIC style). A function ends using end function. The name of the
function is a local variable inside the function and its value is returned as function result when pro-
gram execution reaches the end of the function. Functions can not be declared in direct mode.

field [#]channel%,width as lvalue$ {,width as lvalue$}
Allocate width bytes in the record buffer to the lvalue$. The total number of allocated bytes must
not exceed the record length. The same record buffer can be allocated to different lvalues by using
multiple field statements. Fielded Ivalues must be set with Iset and rset. Simple assignments to
them will cause different storage to be allocated to them, thus not effecting the random access buf-
fer.

files [pattern$)
Run Is -1 with the file specification as argument. Only the meta characters *?[] are passed
through.

for lvalue = expression to expression [step expression]

next [value{,lvalue}

The for loop evaluates first the to and the step expression, storing their values for all loop execu-
tions, and afterwards performs the initial variable assignment. Then it executes the statements in-
side the loop, if the variable is lower or equal than the to value (or greater than for negative steps).
The next statement verifies if the variable already reached the to value. If not, it increments if by
the evaluated step value and causes a new repetition. A missing step expression is treated as step
1. The next statement may be followed by a list of Ivalues. Due to the dynamic variable geome-
try, the lvalues themselves are only checked for belonging to the same variable as those in for. If
no lvalues are given, the innermost loop is terminated. For loops can be left by exit for. Note:
That statement is not offered by all BASIC dialects. Most dialects restrict loop variables to scalar
variables.

get [#]channel% [,record]
Read the record buffer of channel% from the file it is connected to, which must be opened in ran-
dom mode. If a record number is given, the record is read there instead of being read from the
current record position. The first record is 1.

July 26, 2020 3

BAS(1) User commands BAS(1)

get [#]channel%,|position],lvalue
Read the Ivalue from the specified channel, which must be opened in binary mode. If a position
is given, the data is read there instead of being read from the current position. The first position is
1.

goto integer
Continue execution at the specified line. If used from direct mode, the program will first be com-
piled. The older two word go to will be converted into the newer goto. Although allowed by BA-
SIC itself, bas only allows goto statements to be followed by a colon and a comment, because
anything else would be unreachable. This also concerns assigned goto statements.

gosub integer
Execute the subroutine at the specified line. The older two word go sub will be converted into the
newer gosub. If used from direct mode, the program will first be compiled. The return statement
returns from subroutines. Abbreviation: r. Although allowed by BASIC itself, bas only allows re-
turn statements to be followed by a colon and a comment, because anything else would be un-
reachable.

if condition [then] statements [else statements]
If the condition evaluates to a non-zero number of a non-empty string, the statements after then
are executed. Otherwise, the statements after else are executed. If the then or else statements are
directly followed by an integer, bas inserts a goto statement before the number and if the condition
is directly followed by a goto statement, a then is inserted.

if condition then
elseif condition then
else

end if If the then statement is at the end of a line, it introduces a multi-line construct that ends with the
end if statement (note the white space between end and if). This form can not be used in direct
mode, where only one line can be entered at a time. Abbreviations for then and else: th. and el.

image format

Define a format for print using. Instead of using string variables, print formats can be defined this
way and referred to by the line number. The format can be given as a string literal, which allows
leading and trailing space, or without enclosing double quotes. Bas converts the second form to a
quoted string. This statement is ignored during execution. Note: No two dialects share the syntax
and semantics for numbered print formats, but many offer it one way or another. This statement
allows you to adapt much existing code with small changes, but probably differs from most di-
alects in one way or another.

inc lvalue{,lvalue}
Increment lvalue.

input [#channel%,)[;1[string[|,|:11ivalue{,Ivalue}

The input statement prints the optional prompt string and a trailing question mark (?). After, it
reads comma separated values and assigns them to the given variables. If too few values are typed
in, missing values will be requested with the prompt ??. An empty value for a numeric variable
means zero. If too much input data is given, a warning is printed. If a channel other than #0 is
specified, no question marks or error messages will be printed, instead an error is returned. A
semicolon before the prompt will not move the cursor to a new line after pressing RETURN. If
the prompt is followed by a comma, colon or no punctuation at all, no question mark will be
printed after the prompt. Note: Some dialects allow a string expression instead of the string.

Kill filename$
Delete a file.

[let] lvalue{,lvalue} = expression
Evaluate the expression and assign its value to each lvalue, converting it, if needed. Lvalues are
variables or array variable elements. All assignments are performed independently of each other.

July 26, 2020 4

BAS(1) User commands BAS(1)

line input [#channel%,][string;|,)lvalue$
The line input statement prints the optional prompt string, reads one line of input and assigns un-
modified it to the lvalue$. Using a comma instead of a semicolon makes no difference with this
statement.

[list [from][|,1[to]
List (part of) the program text. Control structures will automatically be indented. If the parameter
from is given, the listing starts at the given line instead of the beginning. Similarly, fo causes the
listing to end at line 7o instead of the end of the program. The given line numbers do not have to
exist, there are merely a numeric range. The syntax variant using a minus sign as separator re-
quires that the first line is given as a literal number. This statement may also be used inside pro-
grams, e.g. for list erl. llist writes the listing to the Ip channel.

load [file$]
Load the program file$ (direct mode only). The name may be omitted to load a program of the
name used by a previous load or save statement.

local variable{,variable}
Declare a variable local to the current function. The scope ranges from the declaration to the end
of the function.

locate line,column
Locate the cursor at the given line and column. The first line and column is 1. Not all terminals
support this.

lock [#]channel%
Wait for an exclusive lock on the file associated with the channel% to be granted.

Iset variable$=expression
Store the left adjusted expression value in the storage currently occupied by the variable$. If the
storage does not suffice, the expression value is truncated, if its capacity exceeds the length of the
expression value, it is padded with spaces.

rset variable$=expression
Store the right adjusted expression value in the storage currently occupied by the variable$, pad-
ding with spaces from the right if the storage capacity exceeds the length of the expression value.

mat variable=matrixVariable
Matrix variables are one or two-dimensional array variables, but the elements at index 0 in each di-
mension are unused. The variable does not have to be dimensioned. Note: If it is, some BASIC
dialects require that its number of elements must be equal or greater than that of the matrixVari-
able, which is valid for all matrix assignments. The variable will be (re)dimensioned to the geom-
etry of the matrixVariable and all elements (starting at index 1, not 0) of the matrixVariable will be
copied to variable.

mat variable=matrixVariable[+|—|* matrixVariable]
The variable will be (re)dimensioned as for matrix assignments and the matrix sum (difference,
product) will be assigned to it. Note: Some BASIC dialects require that result matrix variable
must not be a factor of the product, e.g. a=a*a is illegal in those dialects.

mat variable=(factor)*matrixVariable
Assign the scalar product of the factor and the matrixVariable to variable.

mat variable=con[(rows|[,columns])]
Assign a matrix whose elements are all 1 to variable. If dimensions are specified, the matrix vari-
able will be (re)dimensioned. A missing number of columns (re)dimensions the variable with 2
columns, including column O.

mat variable=idn[(rows[,columns])]
Assign a matrix whose diagonal elements are 1 and remaining elements are 0 to variable. Some
dialects can only generate square matrices and use only one argument to specify both rows and
columns.

July 26, 2020 5

BAS(1) User commands BAS(1)

mat variable=inv(matrixVariable)
Assign the inverse of the matrixVariable to variable, (re)dimensioning it if needed. Only two-di-
mensional square matrixes can be inverted.

mat variable=trn(matrixVariable)
Assign the transposed elements of matrixVariable to variable, (re)dimensioning it if needed.
Note: Some BASIC dialects require that variable and matrixVariable are different. Only two-di-
mensional matrixes can be transposed.

mat variable=zer[(rows[,columns])]
Assign a matrix whose elements are all 0 to variable.

mat input [#channel%,|variable[(rows|[,columns])|{, variable[(rows[,columns])]}
This statement reads all elements of a matrix variable without row or column O from the specified
channel (or standard input, if no channel is given). For two-dimensional matrices, the elements are
read in row order. Elements are separated with a comma. If the channel is #0, the prompt ? is
printed until all elements are read.

mat print [#channel%[,]][using format;lmatrixVariable{;|, matrixVariable}[3|,]
Print the given matrixVariable, optionally using the using format string or line (see print using
below) for formatting the matrix elements. If no format string is used, a following comma prints
the elements in zoned format (default), whereas a semicolon prints them without extra space be-
tween them. The output starts on a new line, unless the output position is already at the beginning
of anew line. A blank line is printed between matrix variables.

mat read variable[(rows[,columns))]{, variable[(rows[,columns])]}
Read constants from data statemets and assign them to the elements of the matrix variable.

mat redim variable(rows|,columns]){, variable(rows[,columns])}

Resize a matrix variable. The matrix must not exist before, in which case it will be created. If it
does exist, it must be of the same dimension, but it may be smaller or larger. Truncated elements
will be permanently lost, new elements will be set to 0 for numeric and """ for string variables.
Identical positions in the old and the new matrix keep their value. Note: Some BASIC dialects re-
quire that the matrix variable must exist before, some only forbid to grow matrix variables beyond
their original dimension and some keep the values at the same storage position, which appears as if
they got shuffled around when changing the size and as if previously lost values reappear.

mat write [#channel%[,]imatrixVariable{;|, matrixVariable}[;|,]
Write the values of the given matrixVariable to the specified channel or to standard output if no
channel is given. Different values are separated by commas and a newline is written at the end of
a line. Strings will be written enclosed in double quotes and positive numbers are not written with
a heading blank.

mid$(lvalue$,position%],length%))=value$
Replace the characters starting at the given position% inside Ivalue$ with the characters from
value$. An optional length% limits how many characters of lvalue$ are replaced. The replace-
ment will not go beyond the length of /value$. Note: Not all BASIC dialects support this state-
ment.

mkdir directory$
Create a directory$.

name oldname$ as newname$
Rename the file oldname$ to newname$.

new Erase the program to write a new one (direct mode only). All files are closed and all variables re-
moved.

on choice% goto line{,line}
If the integral value of choice is 1, execution continues at the first specified line, if 2, on the sec-
ond, etc. If the value falls outside the range for which lines are given, execution continues at the
next statement.

July 26, 2020 6

BAS(1) User commands BAS(1)

on choice% gosub line{,line}
This is similar to on goto, but a gosub is executed instead of the goto.

on error goto 0
If executed in the context of an exception handler, re-throw the last exception that happened. Oth-
erwise disable exception handling.

on error statements
Register the statements as exception handler to catch any thrown exceptions. Exception handlers
inside procedures are always local: If a procedure aborts by an unhandled exception, that excep-
tion may be caught by its caller. If the statements do not abort the program or jump elsewhere, ex-
ecution continues at the next line. Note: This more general form differs from traditional inter-
preters that require on error goto.

on error off
Disable exception handling.

open mode$,[#]channel%,file$[length)
Open the file$ through the channel%. The mode must be "i'" for input, "'o"" for output, ""a'" for ap-
pending output or ''r'" for random access. Opening the file for random access requires the record
length to be specified. This syntax is used by MBASIC and some other interpreters.

open file$ [for inputjoutputjappend|jrandom|binary] [access read|writelread write] [shared|lock

read|lock write] as file [#]channel% [len=length%]
Open the file$ through the channel%. Files opened in input mode must already exist, whereas the
other methods create them as needed. If the file is opened for random access and no record length
is specified, a record length of 1 is used. This is the ANSI BASIC syntax found in more modern
programs. The binary mode is similar to random mode, but there is no fixed record length: Data
is read and written directly using get and put without using field. If no open method is specified,
the file is opened as random. Optionally, a file access mode can be specified.

The file locking implementations vary greatly between dialects: Some implementations offer inde-
pendent locks for reading and writing, others offer shared locks (usually used for many readers)
and exclusive locks (usually used for writers). Additionally, locks may be advisory/cooperative or
mandatory. Most dialects use exclusive locks of highest protection by default. Bas implements
POSIX shared/exclusive locks, which are usually advisory, and offers the following:

shared any process can read or write file

lock read
shared lock, open fails if file is locked exclusively

lock write
exclusive lock

default no lock is taken, same as shared
Programs using locks may fail if the dialect they were written for had different lock semantics!

option base base
Specify the lowest array index for dim (zero by default). Note: Many BASIC dialects enforce the
base to be 0 or 1, further they require the base to be specified only once and before creating any ar-
rays. Bas allows to set an individual base for any array, but all mat functions require the bases of
their operands to be equal and to be O or 1.

option run
Ignore terminal interrupts (usually control c) and XON/XOFF flow control (control s/control q).

option stop
Accept terminal interrupts (usually control c¢) to stop a program and XON/XOFF flow control
(control s/control q) to stop and resume terminal output.

July 26, 2020 7

BAS(1)

out address,value

User commands BAS(1)

Write the value to the I/O port address. Direct port access is not available in the portable version.

poke address,value
Write the value to the memory address. Direct memory access is not available in the portable ver-

sion.

(I]print [#channel%[,]1[using format;]{ expression|tab(position)|spc(length)|s|,}
Evaluate the expressions and print their values to the integral expression channel%. If no channel
is given, the standard output channel #0 will be used. The statement Iprint prints to the printer
channel and no other channel can be specified. The using format string or line may contain the
following characters:

!

\

Print the following character instead of interpreting it as formatting command.
Print the first character of a string.
Print two more characters of a string as there are spaces between the backslashes.

Print a string without any formatting. Note: Some BASIC dialects use & characters to
specify the string width. A single & would only print the first character in those dialects.
In other dialects, an ampersand represents one digit of the numeric format, padding the
number with zeroes.

A plus at the beginning or end of a numeric format causes the sign to be printed at the be-
ginning or the end.

A minus at the end of a numeric format prints a trailing minus after negative numbers and
a space else.

A comma inside the integral part of a numeric format inserts a comma before each three-
digit group of the integral part of the number. It also represents one digit in the format.
Although one comma suffices, it makes formats more readable to insert a comma every
three digits.

Each hash sign represents one digit of the numeric format. If there are fewer digits in the
integral part of the value, it is preceded by spaces.

Each caret represents one digit of the exponent. At least three carets are required, be-
cause the exponent is leaded by an E and the epxonent sign is always printed. The num-
ber is printed in the numeric format asked for by hash signs with the exponent adjusted
accordingly, e.g. printing 5 using #Ht##""" results in 500.00E-002.

Like a hash sign, but the number will not be preceded by spaces, but by asterisks.
Like a hash sign, but the number will not be preceded by spaces, but by zeroes.

The dot specifies the position of the decimal point between a pound/asterisk sign group
for the integral value and an optional pound sign group for the precision of the fractional
part.

A dollar sign prefixes the number with a dollar. Further dollar signs increase the numeric
width like # and *. If the dollar sign stands in front of all padding, it will precede it, oth-
erwise it will be printed after any padding.

any other character

Any other character is printed literally and separates different numeric fields of a multi-
field format.

If no format is given, positive values are printed with a heading space, negative values are printed
with a heading minus, the precision is set as required and the number is followed by a space.
print without using will advance to the next line if the value of the expression no longer fits into
the current line.

July 26, 2020 8

BAS(1)

User commands BAS(1)

A semicolon concatenates the output while a comma puts the values in columns. A trailing semi-
colon suppresses printing a trailing newline. The pseudo function tab, which must only be used
within print statements, spaces to the specified print position (column) with O being the leftmost
position. If the current print position is already beyond value, it does nothing. If value is beyond
the output width, advancing the position stops there. The pseudo function spc is similar to tab,
but it prints as many spaces as specified by its argument. Abbreviation: ? or p.

put [#]channel% [,record]
Write the record buffer of channel% to the file it is connected to, which must be opened in ran-
dom mode. If a record number is given, the record is written there instead of being written to the
current record position.

put [#]channel%,|position],value
Write the value to the specified channel, which must be opened in binary mode. If a record num-
ber is given, the data is written there instead of being written to the current position.

randomize [number%]
Seed the random number generator. If no argument is given, it will be initialised with a random
number.

read [value{,Ivalue}
Read constants from data statements and assign them to the /values.

rem arbitrary text
This statement introduces comments.

rename from$ to t0$
Rename a file.

> arbitrary text
This is an alternative form of comments, which can directly follow statements without a colon. An
exclamation mark instead of the quotation mark is also recognised and converted to a quotation
mark.

renum [first[,increment]]
Renumber the program. The first line number and the line number increment can be optionally
given. If omitted, a value of 10 will be used for both.

repeat

until condition
Execute the loop body and repeat doing so if the condition is not zero. The loop body will be exe-
cuted at least once. Abbreviation: rep.

restore [/ine]
Restore the data pointer to the first data statement for reading data again. An optional line num-
ber restores the pointer to the first data statement in that line. Abbreviation: res. Note: Some BA-
SIC dialects allow to specify a line without a data statement and search beginning from that line
for one. This implementation does not allow that, because it is more often an error than used as a
feature.

resume /ine
End an exception handler and continue execution at the specified line. This is only needed if you
intend to re-throw exceptions by on on error goto 0. Although allowed by BASIC itself, bas only
allows resume statements to be followed by a colon and a comment, because anything else would
be unreachable.

run [linelfile$]
Compile the program, clear all variables, close all files and start program execution. If a file is
specified, the file is loaded first and run from the beginning. If a line is specified, execution starts
at the given line.

July 26, 2020 9

BAS(1)

User commands BAS(1)

save [file$]
Save the program to the given file$ (direct mode only). The name may be omitted to save the pro-
gram under the name used by a previous load or save statement.

select case selector

case match{, match}

match = expression [to expression] | is relop expression
case else

end select
Execute the statements after the first case statement that matches the selector expression, then skip
to the end select statement. A single expression matches its value, to matches the range between
the first and the second expression including the limits, and is compares the selector using the rela-
tional operator with the expression. The case else branch always matches if none of the above did.
If the selector does not match any branch, control passes to the statement following end select.
Note: Some BASIC dialects treat this case as an error.

shell [command$)
If a command$ is given, it is executed as child process of bas as bourne shell command. If used
without a command$, the shell specified by the environment variable SHELL (defaults to the
bourne shell if not set) is started without arguments.

sleep pause
The program pauses for pause seconds. If your system allows it, fractional seconds can be used.

stop Stop the program. Apart from printing where the program stopped, this is identical to end.

subfunction[(parameter|,parameter...])]
Define a procedure (function that does not return a value). A procedure ends with subend,; the al-
ternative forms sub end and end sub are converted to subend when loading programs. A proce-
dure can be left by subexit; again the alternative forms sub exit and exit sub and converted to
subexit when loading programs. Procedures can not be declared in direct mode. This is the ANSI
syntax.

swap [valuel,lvalue?2
Swap the contents of lvaluel and Ivalue2. Both must be of identical type.

system Exit from bas. Alternatively, bye may be used.
tron Enable tracing by printing the line number of each executed program line.
troff Disable program tracing.

truncate [#]channel%
Truncate the file after the current position. The file must be opened with write access.

unlock [#]channel%
Release any locks on the file associated with the channel%.

unnum Remove all line numbers that are not needed, which is the the opposite to renum. This command
is specific to bas, although a similar command is found in Bytewater BASIC.

wait address,mask,select
Wait until the I/O port address (XORed with select, if specified) masked out using mask is not
equal zero. Direct port access is not available in the portable version.

while expression
wend While the expression is not zero, the loop body, ended by wend, will be repeatedly executed.

width [#channel%l,]] [[width%][,zone%]|
Set the channel width%. After width% characters have been printed to the channel, a newline
character is automatically sent to it for starting a new line. A width% of zero sets the channel

July 26, 2020 10

BAS(1) User commands BAS(1)

width to infinite. Optionally, the zone width can be specified. Note: Some dialects use this, others
use the zone statement.

write [#channel%],]1{expression|,|;}
Write the values of the given expressions to the specified channel or to standard output if no chan-
nel is given. Different expressions are separated by commas and a newline is written at the end of
the list. Strings will be written enclosed in double quotes and positive numbers are not written
with a heading blank.

xref Output a list of all functions, global variables, GOSUB and GOTO statements and the line num-
bers where they are referenced.

zone [#channel%][,]lwidth%
Set the channel zone width%. A comma in PRINT advances to the next print zone, similar to a
tabulator.

Expressions and Functions

Expressions consist of operators or functions that act on integer, real (floating point) or string values. Be-
side decimal notation, integer values can be written as hexadecimal values by prefixing them with &h and
as octal values by prefixing them with &o. String constants may contain paired double quotes to specify
double quote characters inside strings. If the constant is terminated by the end of the line, the trailing dou-
ble quote can be omitted. Numeric constants with the suffix # or ! are always regarded as floating point
constants, bas ignores the precision specification, because it does not offer different precisions. Integer
constants may be followed by the suffix %. If an integer literal is outside the integer value range, it is
treated as a floating point literal.

The table below shows the available operators with decreasing priority. The operator => is converted to >=,
=< is converted to <= and >< is converted to <> when programs are loaded.

operator meaning
" exponentiation
- unary negation
+ unary plus
* multiplication
/ floating-point division
\ integer division (equal to fix(a/b))
mod modulo
+ addition, string concatenation
- substraction
> greater than
>= greater than or equal to
= equal to
<> not equal to
<= less than or equal to
less than
not binary complement
and binary and
or binary or
xor binary exclusive or
eqv binary equivalent
imp binary implication

Besides operators, various builtin functions can be used in expressions. The dollar character ($) denotes
that the argument must be of the type string. The actual parameters of functions, both builtin and user-de-
fined, as well as subroutines, are passed by value. Note: Modern (not old) ANSI BASIC passes actual pa-
rameters by reference. Many classic dialects don’t offer call by reference and bas follows that direction.
Arguments to functions and subroutines must be enclosed in parentheses. Note: Some dialects allow to

July 26, 2020 11

BAS(1)

User commands BAS(1)

omit them, which introduces ambiguity in some cases.
abs(x) Return the absolute value of n.

asc(string$)
Return the numeric value of the first character of the string.

atn(x) Return the arctangent value of x.

bin$(n%)
Return a string containing the binary conversion of n%.
bin$(n%,digits %)
Return a string containing the binary conversion of n% with the specified number of digits%.

chr$(value%)
Return a string of length 1 that contains the character with the given value%.

cint(x) Return the integral value value nearest to x (rounded upwards).

code(string$)
Return the numeric value of the first character of the string. This is the same as asc(string), used
by dialects that took non-ASCII systems into consideration.

command$
Return extra command line arguments after the program name, separated by spaces. The program
name is not part of the return value. Note: This function is implemented for compatibility and
does not deal with arguments with embedded spaces.

command$(n%)
Return the n%th argument passed to the program, starting with 1. The first returned argument (in-
dex 0) is the program name.

cos(x_rad)
Return the cosine value of x_rad.
cvd(x$)
Convert a string value generated by mkd$(x) back to a floating point value. The string characters

contain the bytes of a C double precision value. The string length and the byte encoding is ma-
chine dependent and not portable.

cvi(x$) Convert a string value back to an integral value. The string characters contain the bytes of a
signed little endian number and the sign bit of the last byte determines the sign of the resulting
number.

cvs(x$) Convert a string value generated by mks$(x) back to a floating point value. The string characters
contain the bytes of a C single precision value. The string length and the byte encoding is ma-
chine dependent and not portable.

date$ Return the date as a 10-character string in the form mm—dd—-yyyy.

dec$(x,format$)
Convert x to a string according to the print using format$.

deg(radians)
Convert radians to degrees.

det Return the determinant of the last matrix inverted.

edit$(string$,code%)
Return the result of editing the string$ as indicated by the code%. The following editing codes are

available:
1 discard parity bit
2 discard all spaces and tabs

July 26, 2020 12

BAS(1)

User commands BAS(1)

4 discard all carriage returns, line feeds, form feeds, deletes, escapes and nulls

discard leading spaces and tabs

16 convert multiple spaces and tabs to one space

32 convert lower case to upper case

64 convert left brackets to left parentheses and right brackes to right parentheses

128 discard trailing spaces and tabs

256 suppress all editing for characters within matching single or double quotes. If the match-

ing quote is missing, suppress all editing up to the end of the string.
The codes can be added for combined editing operations.

environ$(n%)
Return the n%th environment entry in the form variable=value, starting with 1. If n% is larger
than the number of entries, an empty string is returned.

environ$(variable$)
Return the value of the specified environment variable$. If there is no such variable, an empty
string is returned.

eof(channel%)
Return true if the end of the channel has been reached. This must be used to avoid that input tries
to read past the end of a file.

erl Return the number of the line where the last exception was thrown.
err Return a numeric code for the last exception that was thrown. The use of this function is not por-
table.

exp(x) Return the value of e raised to the power of x.
false Return 0.

find$(partern$[,nth%))

Return the first (or nth%, starting from O, if specified) filename that matches the given pattern or
the empty string, if no filename matches the pattern. This function is usually used to check for the
existance of a file. The pattern may use the wildcards * to match an arbitrary number of characters
and ? to match a single character. Note: On some systems, the star does not match a dot inside a
filename. In this implementation, the star matches everything and *.* only matches files with a dot
in their name, not files without an extension. Some systems also encode file attributes in the eigth
bit of the file name and programs strip that bit from the output of find$. It is recommended to use
only 7-bit file names with applications using this function.

fix(x) Return the integral part of a floating point value.

fp(x) Return the fractional part of a floating point value.

frac(x) Return the fractional part of a floating point value; same as fp.
freefile Return the first free file handle.

hex$(n%)
Return a string containing the hexadecimal conversion of n%.

hex$(n%,digits%)
Return a string containing the hexadecimal conversion of n% with the specified number of dig-
its%.

inkey$[(timeout%|,channel))]
Wait at most timeout hundredths of a second for a character to be read from the terminal. If a
character could be read, return it, otherwise return the empty string. Omitting the timeout% will
return immediatly if no character is available. Note: Some BASIC dialects wait until a character is
available if no timeout is given instead of returning an empty string. Convert those programs by

July 26, 2020 13

BAS(1) User commands BAS(1)

using input$(1) instead.

inp(address)
Return the value of the I/O port address. Direct port access is not available in the portable version.

input$(length[,channel])
Read a string of length characters from standard input or from the specified channel. The charac-
ters will not be echoed.

instr(haystack$,needle$)
Return the position of needle$ in haystack$. If needle$ is not found, then 0 is returned.

instr(start%,haystack$,needle$)
As above, but start searching at position start% (first position is 1).

instr(haystack$,needle$,start%)
As above, but some BASIC dialects have this order of parameters.

instr(haystack$,needle$,start%,length%)
As above, but only limit search to the first length% characters starting at position start%.

int(x) Return the integral value nearest to x (rounded downwards).

int% (x)
Same as int, but return an integer.

ip(x) Return the integral part of a floating point value; same as fix.

Icase$(string$)
Return the string with all characters changed to lower case.

lower$(string$)
Same as lcase, some dialects call it this way.

left$(string$,n%)
Return the first n% characters of the string. If n is greater than the number of characters in the
string, the whole string is returned.

len(string$)
Return the length (number of characters) of the string.

loc(channel%)
If used on random-access files, the number of the last accessed record is returned. For sequential
files, the current read/write position is returned. Note: Some BASIC dialects return the record po-
sition in bytes and the read/write position in pseudo-records.

lof(channel%)
Return the size of the file that is attached to the channel (bytes for sequential or binary files,
records for random-access files). This may not work correctly for files with sizes that exceed the
range of integer numbers. Note: Some BASIC dialects return the number of bytes even for ran-
dom-access files.

log(x) Return the natural logarithm of x.
log10(x)

Return the base-10 logarithm of x.
log2(x) Return the base-2 logarithm of x.

match(needle$,haystack$,start%)
Return the first position of needle$ in haystack$ that is greater than or equal start%. If the search
fails or if start% exceeds the length of haystack$, O will be returned. The following characters in
needle$ have a special meaning: ! matches any letter, # matches any digit, ? matches any character
and \ quotes the next character, e.g. \? matches a question mark.

July 26, 2020 14

BAS(1)

User commands BAS(1)

max(x,y)
Return the maximum of x and y.

Itrim$(string$)
Return the string without leading spaces.

mid$(string$,position%|,len%])
Return the substring of string that begins at the given position% (the first character is at position
1). If string is too short for a substring of len% characters, fewer characters will be returned.

min(x,y)
Return the minimum of x and y.

mkd$(x)
Return a string whose characters contain the bytes of a C double precision number. The string
length and byte encoding depends of the machine type and is not portable.

mks$(x)
Return a string whose characters contain the bytes of a C single precision number. The string
length and byte encoding depends of the machine type and is not portable.

mKki$(x)
Return a string whose characters contain the bytes of a little endian integral value. The string
length depends of the machine type, but the little endian encoding allows to store only e.g. the first
two bytes if the value does not exceed the range of a signed 16 bit number.

oct$(n%)
Return a string containing the octal conversion of n%.

peek(address)
Return the value of the memory address. Direct memory access is not available in the portable
version.

pi Return the constant pi.

pos(dummy)
Return the current cursor position, starting with 1 as the leftmost position. The numeric dummy
argument is needed, because old BASIC implementations did not allow functions without argu-
ments.

pos(haystack$,needle$,start%)
Same as instr$, some dialects use this function name.

rad(degrees)
Convert degrees to radians.

right$(string$,n%)
Return the last n characters of the string. If n% is greater than the number of characters in the
string, the whole string is returned.

rnd([x%])
Return a random integer number between 1 and x%. If x% is zero, one or missing, a real number
between 0.0 and 1.0 is returned. If x% is negative, the random number generator will be seeded
with -x% and the functions returns a value as if -x% had been passed to it.

rtrim$(string$)
Return the string without trailing spaces.

seg$(string$,position%,len%)
Same as mid$, some dialects use this function name.

sgn(x) Return the sign x: —1 for negative numbers, 0 for 0 and 1 for positive numbers.

July 26, 2020 15

BAS(1) User commands BAS(1)

sin(x_rad)
Return the sine value of x_rad.

space$(length%)
Return a string containing length% spaces.

sqr(x) Return the square root of x.
str$(x) Return a string that contains the decimal represantation of x.

string$(length,x)
Return a string of size length whose characters have the decimal code x.

string$(length%,x$)
Return a string of size length% whose characters are the first character of x3$.

strip$(string)

Return the string with the eighth bit of each character cleared.
tan(x_rad)

Return the tangent of x_rad.

time Return the current value of the centisecond counter.

time$ Return the time as a 8-character string in the form hh—mm-—ss.
timer Return the number of seconds elapsed since midnight local time.
true Return —1.

ucase$(string$)
Return the string with all characters changed to upper case.

upper$(string$)
Same as ucase$, some dialects call it this way.

val(string$)
If possible, then convert the string$ into an integer or floating point value, ignoring trailing junk.
Otherwise, return 0.0. Like anywhere else, hexadecimal values are specified by a leading &h.

OPTIONS
—b, ——backslash—colon
Convert backslashs to colons. By default, a backslash is the operator for integer division, but in
some BASIC dialects it forms compound statements as the colon does.

-1 file, ——lp file

Write LLIST and LPRINT output to file. By default, that output will be written to /dev/null.
—-r, —restricted

Restricted operation which does not allow to fork a shell.

—u, ——uppercase
Output all tokens in uppercase. By default, they are lowercase, which is easier to read, but some
BASIC dialects require uppercase. This option allows to save programs for those dialects.

—h, —help
Output usage and exit.

—v, ——version
Display version information and exit.

AUTHOR
This program is copyright 1999-2020 Michael Haardt <michael@moria.de>.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limita-
tion the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Soft-
ware, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

July 26, 2020 16

BAS(1) User commands BAS(1)

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LI-
ABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

HISTORY
There has been a bas(1) command in UNIX v7, but its syntax was strongly influenced by C, unlike com-
mon classic BASIC dialects, and thus not compatible with this implementation.

SEE ALSO

The Usenet group comp.lang.basic.misc discusses the classic BASIC dialect.

July 26, 2020 17

